$\begin{aligned} & \hline \mathbf{1} \\ & \text { (i) } \end{aligned}$	(A) $\quad \mathrm{P}($ Avoided air travel $)=\frac{7}{100}=0.07$ (B) $\mathrm{P}($ At least two $)=\frac{11+2+1+4}{100}=\frac{18}{100}=\frac{9}{50}=0.18$	B1 aef isw M1 for $(11+2+1+4) / 100$ A1 aef isw	1	For M1 terms must be added must be as above or better with no extra terms (added or subtracted) for M1 Must simplify to $18 / 100$ or $9 / 50$ or 0.18 for A1 SC1 for 18/58 Or $1-(14+26+0+42) / 100=0.18$ gets M1A1
(ii)	$\mathrm{P}(\text { Reduced car use } \mid \text { Avoided air travel })=\frac{6}{7}=0.857$	M1 for denominator 7 or $7 / 100$ or 0.07 FT their (i)A A1 CAO	2	Allow 0.86
(iii)	$P(\text { None have avoided air travel })=\frac{93}{100} \times \frac{92}{99} \times \frac{91}{98}=0.8025$	M1 for 93/100× (triple product) M1 for product of remaining fractions A1	3	Fuller answer 0.802511 , so allow 0.803 without working, but 0.80 or 0.8 only with working . $(93 / 100)^{3}$ scores M1M0A0 which gives answer 0.804357 so watch for this. MOMOA0 for binomial probability including 0.93^{100} but ${ }^{3} \mathrm{C}_{0} \times 0.07^{0} \times 0.93^{3}$ still scores M1 $(k / 100)^{3}$ for values of k other than 93 scores M0M0A0 $\frac{k}{100} \times \frac{(k-1)}{99} \times \frac{(k-2)}{98}$ for values of k other than 93 scores M1M0A0 Correct working but then multiplied or divided by some factor scores M1M0A0 ${ }^{93} \mathrm{P}_{3} /{ }^{100} \mathrm{P}_{3}=0.803 \quad{ }^{93} \mathrm{P}_{3}$ seen M1 divided by ${ }^{100} \mathrm{P}_{3}$ M1 0.803 A1 ${ }^{93} \mathrm{C}_{3} /{ }^{100} \mathrm{C}_{3}=0.803$ Allow unsimplified fractional answer 778596/970200 =9269/11550
		TOTAL	8	

2	$1 \times \frac{1}{5}=\frac{1}{5}$	M1 A1	$\mathbf{2}$
(ii)	$1 \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{-} \times \frac{1}{5}=\frac{24}{625}=0.0384$	M1 For $1 \times \frac{4}{5} \times$ or just $\frac{4}{5} \times$ M1 dep for fully correct product A1	$\mathbf{3}$
(iii)	$1-0.0384=0.9616$ or $601 / 625$	B1	$\mathbf{1}$
		TOTAL	$\mathbf{6}$

4	(i)	$\mathrm{P}(G) \times \mathrm{P}(R)=0.24 \times 0.13=0.0312 \neq \mathrm{P}(G \cap R) \text { or } \neq 0.06$ So not independent.	G1 for two labelled intersecting circles G1 for at least 2 correct probabilities G1 for remaining probabilities M1 for 0.24×0.13 A1	[3] [2]
	(iii)	$P(R \mid G)=\frac{P(R \cap G)}{P(G)}=\frac{0.06}{0.24}=\frac{1}{4}=0.25$	M1 for numerator M1 for denominator A1 CAO TOTAL	[3] [8]

5	(i)	$\mathrm{P}($ Guess correctly $)=0.1^{4}=0.0001$	B1 CAO	[1]
	(ii)	$\mathrm{P}\left(\mathrm{Gu}\right.$ ess correctly) $=\frac{1}{4!}=\frac{1}{24}$	M1 A1 CAO	[2]
				[3]

$\mathbf{6}$ (i)	(A) $\quad \mathrm{P}($ at most one $)=\frac{83}{100}=0.83$	B1 aef	$\mathbf{1}$	
(B) $\quad \mathrm{P}($ e actly two $)=\frac{10+2+1}{100}=\frac{13}{100}=0.13$	M 1 for $(10+2+1) / 100$ A1 aef	$\mathbf{2}$		
(ii)	P (all at least one $)=\frac{53}{100} \times \frac{52}{99} \times \frac{51}{98}=\frac{140556}{970200}=0.145$	M1 for $\frac{53}{100} \times$ M1dep for product of next 2 correct fractions A1 CAO	$\mathbf{3}$	TOTAL

